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Abstract—Accurate, transport-controlled, mass transfer coefficients for packed beds have been measured by
an electrochemical technique at low Reynolds numbers (0.00271 < v/av < 0.198). At low Péclet numbers, the
data show a strong dependence upon the bed length, but this dependence diminishes at the higher flow rates.
The results are correlated by a dual-sized, straight-pore model for the bed’s pore volume.
The bed behaves as though 1.46% of the pore volume were in pores whose diameter is 56%, greater than the
diameter of the remaining pores. The larger pores result in a flow maldistribution and significantly reduce
mass transfer at the lower Péclet numbers.

NOMENCLATURE

A, dimensionless amplitude of sinusoidal, per-
iodically constricted tube (PCT);

a, specific interfacial area of tube size i matrix
[em™'];

a, = a, + a,, specific interfacial area of entire
bed [em™'];

B, =(1+./1+4D)/72;

Cp reactant feed concentration [mol/cm’];

c.; Treactantconcentration exiting from tube size
i matrix [mol/em?];

CL, reactant concentrating exiting from bed
[mol/cm?];

d,,  diameter of packing particle [cm];

D', = eakE/v?,

9q, free stream reactant diffusivity [cm?/s];

E, dispersion coefficient [em?/s];

h, defined by equation (20);

kg, film mass transfer coefficient [cm/s];

k.  effective mass transfer coefficient for bed
[emys];

L, bed length [cm];

n, empirical constant;

Pe, =vj/a;2, Péclet number for tube size i
matrix ;

Pey, = v/aZ,, Péclet number for bed;

q;,  flowrate in tube size i [cm3/s];
Q..  collective flowrate in tube size i matrix

[em?/s];

ri radius of tube size i [cm];

Ta, dimensionless radius of PCT;

Reg, = v/av, Reynolds number;

Sh, = ¢k, /a;Z,, Sherwood number for tube
size [ matrix ;

Shg, = ¢k, /a%,, Sherwood number for bed;

v superficial velocity in tube size i matrix

[em/s];

* Present address: Department of Chemical Engineering,
North Carolina State University, Raleigh, NC 27650, U.S.A.

v, v; + v,, superficial velocity in bed [cm/s];
z, streamwise coordinate [cm].

Greek symbols

a, = aky/v [em™1];

¥s =0,/0,;

&, porosity of tube size i matrix;
& = ¢, + &, bed porosity;

67 = r2/r1 N

v, kinematic viscosity [cm?/s];

s

fitting coefficient in equation (6).

INTRODUCTION

MaNY REFERENCES in the chemical engineering liter-
ature report mass transfer coefficients in packed beds.
Understandably, very few of these works have been
directed at studying mass transfer rates at very low
Reynolds numbers (« 1). There is a need, however, to
characterize the fluid-to-particle transport rate at very
low Reynolds numbers, for example, the flowrate in
flow-through porous electrodes must often be in a
region of very low (« 1) Reynolds number in order to
minimize the detrimental ohmic potential drop [1].
This paper reports an experimental study of
transport-controlled mass transfer coefficients at low
Reynolds numbers (< 1) in a packed-bed reactor. The
results are correlated by a model which incorporates a
flow-maldistribution (channelling) effect. The work
presented in this paper represents the final report in an
effort to characterize on a more fundamental basis the
mass transfer rate in packed-bed reactors [2-5].

MASS TRANSFER COEFFICIENT

There are two mass transfer coefficients that can be
used to characterize the reaction rate in packed beds.
The so-called film coefficient k,; represents the pro-
portionality constant between the local reaction rate
and the local concentration driving force. The film
coefficient appears on the right side of the conservation
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equation for the reactive species as written in equation
(1) for a mass transfer controlled reaction:
d?c de

Ed:2 — L‘E = akqc. (1)

The film mass transfer coefficient is a measure of the
local reaction rate in the bed. Itis a quantity thatisnot
very convenient to measure. The concentration of the
reactant far upstream and far downstream of a reactor
1s more readily accessible to experimental determi-
nation. These measurements are correlated by the
effective mass transfer coefficient k. In the mass
transfer controlled reactor under discussion, the de-
finition of k,, is

ki = ﬁ In (cg/c,). )

These two mass transfer coefficients are related as has
been pointed out by [1];

ko=t v
"™ B alL
B+ D/(l B) [ L<l + B>:I
=5 = B)exp| —alL|=-+ —
x In B B D - (3)

1 + D'/B?

If so desired, the experimental k, measurements can be
corrected by equation (3) to give k;. An expression for
the dispersion coefficient is, however, required. The
distinction between the two coefficients is unimportant
at high Reynolds numbers. At low Reynolds numbers,
the two coefficients show different dependencies on the
flowrate, as has been discussed previously [3].

Shown in Fig. 1 are k, data (expressed as a
Sherwood number) found in the literature as a func-
tion of the Péclet number. Each of these data points
was collected in a mass transfer controlled bed with the
Reynolds number (v/av) less than one. Both gas and
liquid phase data are included. The Péclet number is
the most appropriate grouping to characterize the
mass transfer rates at low Reynolds numbers (creeping
flow).

Note that (1/a) has been chosen as the characteristic
length in lieu of the packing particle diameter. For a
bed of uniformly sized spheres, these two length scales
are related by ad, = 6(1 — ¢).

The lines sketched on this figure are drawn only to
indicate the asymptotic trends of k., with the Péclet
number (v/aZ,). Clearly, there are different trends. In
the lower Péclet number range, k, becomes linearly
proportional to the velocity v, whereas in the higher
Péclet number range k,, becomes proportional to *,/v.
This second line is a plot of Wilson and Geankoplis’
correlation [12]:

knd . 13

kndp _ 109 (f’.‘le) _ @)
%o e \ %

Most of the data reported are taken in relatively
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shallow beds. The aL product ranges from 3 (one
particle layer) to 29.

There is considerable scatter in the data shown. The
differences between different authors is certainly evi-
dent. Also noteworthy is the large degree of scatter in
the data confined to one author, particularly at the
lower Péclet numbers.

Theoretical calculations [14] have predicted in
creeping flow that the mass transfer coefficient should
be dependent upon the length of the reactor. The
validity of those calculations cannot be ascertained
with the available data.

MASS TRANSFER COEFFICIENT MEASUREMENTS

The limiting-current procedure was used to measure
the transport-limited mass transfer coefficients [6]. A
schematic of the apparatus is shown in Fig. 2, and a
summary of the procedure given below. The reader
interested in more details should consult [15].

Summary of procedure

A randomly packed bed of uniform-size, 3.175 mm
(1/8" dia.), copper plated, stainless steel bearings was
used as the cathode in a glass, thermostatted, elec-
trochemical, flow-through reactor 76.2 mm in dia-
meter. Copper was plated on the surface of these
particles from an acidified (1 M H,SO,) copper sulfate
solution. Copper deposition was chosen as the test
reaction because atomic absorption could be used to
measure accurately the ion concentration at the lower
concentrations used (0.1 p.p.m.) with an uncertainty of
+1%. The evolution of O, in a separate compartment
was the anode reaction. Sufficient cathodic polari-
zation was applied to the bed to ensure that the
deposition reaction was controlled by the transport of
the Cu®” ions to the particle surface. This transport
controlled reaction manifests itself as a limiting-
current plateau on a plot of current vs applied
potential. The overall reaction rate for the copper
deposition can be measured by two independent
techniques: (i) the inlet and outlet Cu? * concentration
is determined and (ii) the cell current is measured. The
latter is, according to Faraday’s Law (assuming neglig-
ible side reactions) proportional to the amount of
copper consumed. These two independent measure-
ments permit a cross verification of the mass transfer
coefficients calculated from the data. Only those data
that gave mass transfer coefficients which deviate +5%,
from the average are reported. All other data were
rejected. The experimental variables which were mani-
pulated were the flowrate of the feed solution, the
Schmidt number of the feed (by addition of glycerol),
and the packing depth. The Reynolds number (v/av)
varied from 0.198 to 0.00271; two values of Schmidt
number were studied, 1900 and 8880, and the bed
depth could be characterized by al. = 30 and 100.

A total of 59 runs yielded k, data which meet the
specification given above. The reduced data for these
runs are presented in Table 1 and are compared with
Appel and Newman’s data for a shorter bed on Fig. 3.
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F1G. 1. Low Reynolds number mass transfer coefficients in packed beds.

A clear dependency of Shy on aL at the lower Péclet
numbers is seen, and this dependency diminishes as the
Péclet number increases.

MASS TRANSFER COEFFICIENT CORRELATION

In a series of earlier papers the authors have
calculated predicted Sherwood numbers for a bed
when the void space between the packing was en-
visioned as a sinusoidal PCT. The following limiting
Sherwood numbers were calculated:

Shy) = low Péclet number, deep bed asymptotic
Sherwood number,

Shi?’ = high Péclet number, deep bed asymptotic
Sherwood number,

Sh? = high Péclet number, entrance region asymp-
totic Sherwood number,

Shi = high Péclet number, mixing region Sher-
wood number.

An attempt was made to combine these asymptotic
Sherwood numbers smoothly in some manner to cover
the non-asymptotic regions and compare the pre-
dictions with the data in Fig. 3. Churchill and Usagi
[16], expanding upon an idea suggested by Acrivos
[17], have pointed out a manner to combine asymp-
totic formulae. Their procedure will be utilized here.
As a first attempt, the model for the bed as an array of
PCT leads one to write

1 _ 1 n N 1 nm (5)
Shy | \Sh ShP + Sh{Y '

This is not a unique representation, but it is the
simplest. The exponent » must be determined by a
data-fitting procedure.

The usefulness of combining the asymptotic for-
mulae as suggested in equation (5) can be found by
testing it with Sgrensen and Stewarts [14] calcu-

Nofion (+)
t

membrane
A~
'—~|| Pt gouze
| counterelectrode

From .
reagent )
i OWN ' )
Pump % = Pocked bed
Thermostoted Water /J/
bath ocket

oo (=)

FiG. 2. Schematic of packed bed electrode cell.



Table 1. Calculated results

vd £k

Ran el W W SR A

Yo o o
10 ©0.366  30.1 0.213 0.0560 1900 107 1.69
11 0.391  29.0  0.409 0.112 1900 213 2.42
12 0.382  30.4 0.211 0.0568 1910 108 1.71
15 0.372 100 0.213 0.0565 1910 108 1.564
18 0.385  30.4  0.413 0.112 1887 211 2.50
19 0.374  30.3  0.413 0.110 1887 207 2.18
20 0.385 100 0.413 0.112 1887 211 2.11
21 0.406  30.3  0.0880 0.0247 1887 46.5 1.34
22 0.390 100 0.0878 0.0240 1903 45.9  1.04
24 0.390  29.1  0.125 0.0341 1903 65.0  1.48
25 0.393  29.7  0.0477 0.0131 1910  25.1 0.828
27 0.385 100 0.0450 0.0122 1894 23.2 0.477
28 0.385 100 0.0664 0.0180 1894 34.0  0.642
30 0.39%  29.7  0.043% 0.0120 1894 22.8 0.787
31 0.392  36.4  0.165 0.0453 1921 87.1  1.80
32 0.396  30.5  0.0249 6.83x107% 1906  13.1  0.615
33 0.396  30.5 9.82x107°  2.71x107° 1908 5.20 0.330
3 0.396  30.5 0.137 0.0377 1906 71.8  2.07
35 0.392 101 0.0290 79651073 1906 15.2  0.450
36 0.392 101 0.0522 0.0143 1906 27.2  0.683
37 0.392 101 0.169 0.0463 1906 88.2  1.50
40 0.400  30.4  0.0695 0.0193 1910 36.8 1.08
4l 0.393 99,9 0,124 0.0340 1910 64.9  1.41
42 0.393  99.9  0.0503 0.0138 1910 26.5  0.897
43 0.393 99,9 0.104 0.0286 1910 54.6  1.26
44 0.393  99.9  0.185 0.0508 1910 97.1 1.78
45 0.393  99.9  0.230 0.0631 1910 121 2.10
47 0.393  99.9  0.341 0.0937 1910 179 2.55
48 0.393 09,9 0.3%0 0.107 1910 204 2.75
51 0.373 30,3 0.489 0.130 1915 249 2.86
52 0.373  30.3 0.564 0.150 1915 288 3.07
53 0.373  30.3 0.673 0.179 1915 343 3.22
55  0.383 100 0.288 0.0779 1926 150 1.99
56 0.383 100 0.515 0.139 1926 267 2.57
57 0.383 100 0.418 0.113 1926 218 2.41
58 0.383 100 0.581 0.157 1926 302 2.87
59 0.383 100 0.773 0.198 1926 382 3.33
61 0.400  29.9  0.0580 0.0161 1919 30.9  1.14
62 0.400  29.9 0.0162 4.50x1073 1919 8.63 0.523
63 0.400  29.9 0.0788 0.0219 1919 41.9  1.56
64 0.400  29.9  0.0343 9.54x1073 1919 18.3 0,935
65  0.400  29.9 0.141 0.0393 1919 75.3  2.10
66  0.400  29.9 0. 0.0581 1919 111 2.53
67  0.387 100 0. 9.37x107% 1919 15.0  0.484
68  0.387 100 0. 6.03x1073 191y 1l.6  0.332
69  0.387 100 0. 0.0186 1919 35.8  0.770
70 0.387 100 0. 0.0259 1919 49.7  1.08
71 0.387 100 0.141 0.0384 1919 73.7  1.34
72 0.387 100 0.0817 0.0222 1919 42.5  0.983
74 0.388  30.0  0.0210 5.731070  #880  S0.9  1.55
75 0.388 30,0 8.92x1077  2.43x1073 8880  21.5  0.949
76 0.388  30.0 0.0299 8.13x10°3 8800  72.1 1.85
77 0.388  30.0 0.0397 0.0108 8880  96.1  2.02
78 0.388  30.0 0.0485 0.0132 8880 117 2.25
79 0.388  30.0 0.0610 0.0166 8880 148 2.47
80  0.388  30.0 0.0782 0.0213 8880 189 2.88
81 0.388  30.0 0.102 0.0279 8880 248 3.21
82 0.388  30.0 0.133 0.0363 8880 322 3.57
83  0.386  30.0 0.174 0.04764 8RRO 421 4.08

lations. These authors have solved the convective
diffusion equation in creeping flow for an array of
uniformly sized, simple cubic packed spheres. They
presented numerical calculations for k,, as a function
of bed depth and Péclet number. They also presented
formulae for the Sh§, i = 1,2, 3. Figure 4 is a plot of the
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calculated k, compared with that given by com-
bination of tne asymptotes according to equation (5)
with n = 1. Even in this worse case the deviation
appears acceptable.

The value of n to fit the experimental data was
determined by fitting the 68 data points shown in Fig. 3
to equation (5) by using a non-linear, least squares
procedure. The value depended upon the tube para-
meters used. Both a sinusoidal PCT model with r, =
1/2, A/r, = 1/3 and a straight tube model (A/r, = 0)
were tested against the data.

The data clearly indicate that in the lower Péclet
numbers ( < 10) the Sherwood number depends upon
the packing depth. However, as the Péclet number
increases, this length dependence diminishes. For
Péclet numbers greater than 100, there is no significant
distinction between the Sherwood number in a bed of
alL = 10 vs aL. = 100. At this Péclet number, the
Reynolds number was approx. 100/2000 = 0.05.
Equation (5) could never reproduce this trend. It
shows the strongest length dependence as the Péclet
number increases due to the Shy’ which is the only
length-dependent term in equation (5).

In the high Péclet number region, the model calcu-
lations involved the assumption that the boundary
layer formed along the particle surface retained its
identity throughout the depth of the bed. It was
anticipated that this would be true only in the creeping
flow regime because any inertially caused mixing
effects at higher Reynolds numbers would destroy the
boundary layer. The higher Péclet number data sug-
gest that the boundary layers do lose their identity.
One can speculate as to the cause of this phenomenon
at such low Reynolds numbers. Perhaps the lateral
mixing of streams due to the random placement of the
particles (which is not taken into account in the model)
contributes to the destruction of the boundary layers.

No matter what the mixing mechanism, an empiri-
cal Reynolds number dependence may be incorpo-
rated into an analog of equation (5). In this manner,
the asymptotic Sherwood numbers were combined as

1 ry | "
—— = —_ + | — —noRey
Sh {[(Sh(nl)> (.Sh&f’ - Sh<.3’,> }:
nylm
+ | . (6)
)

The exponential term involving the Reynolds number
will cause the contribution of the length-dependent
term to become negligible compared to the length-
independent term as the Reynolds number increases.
There are now two parameters to fit to the data, n and
0. The values of these parameters are again dependent
upon the geometric parameters of the tube.

The high Péclet number data were fitted excellently
by the straight-tube model but less well by the
sinusoidal PCT. For all values of the PCT geometrical
parameters reported in the earlier publications, the
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F1G. 3. Mass transfer limited Sherwood numbers for packed beds collected in this work. Appel’s [15] data
are also included.

PCT calculations consistently underestimate the mass
transfer coefficient. The level of success obtained in
fitting high Péclet number, mass transfer coefficients
with the straight tube model was further emphasized
when the data of other investigators were considered.
However, neither model can satisfactorily fit the lower
Péclet number data. Both models overestimate the
Sherwood number in this region and, as with equation
(5), a length dependence is not predicted. These lower
Péclet number data point to a weakness in the model
which will be discussed shortly.

The straight-tube calculations fit the collected data
at higher Péclet numbers much better than the PCT
calculations. On this basis, one can conclude that the
PCT model is not successful in fitting packed bed mass
transfer data. The higher level of complexity required

in calculating the PCT velocity profiles and asymptotic
Sherwood numbersin a PCT geometry is not required.
The PCT model was thought a priori to have been a
better model for the bed because it would, in a sense,
reproduce the constrictions and expansions that the
actual fluid path must follow in a bed. This assumption
has been proved wrong by this work. In the remainder
of this work, the straight-tube model calculations are
exploited.

THE EFFECT OF FLOW MALDISTRIBUTION IN A PACKED
BED ON THE MASS TRANSFER COEFFICIENT

The low Péclet number, mass transfer coefficients

obtained in this work show a stronger length de-

pendence than is predicted by any model calculations.
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F1G. 4. Comparison of S¢rensen and Stewart’s [14] numerically calculated Sherwood numbers with those
given by combining the asymptotes according to equation (5) with n = 1.
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Table 2. Calculated results of [ 14] for the mass transfer coefficient in a simple cubic packed bed of uniformly
sized spheres

eKpjasy
(1 2) (3) @) (5)
L aL 49 9.9 15 7 2y 4
ay \

9.55 0916 0.769 0.714 0.595 129
318 1.37 1.09 0954 0.598 1.82
95.5 211 1.59 1.38 0.603 2.64

318 318 218 0.614 4.15

2.55

The full solution to the convective—diffusion equation
will give a length-dependent coefficient for all values of
the Péclet number, but this dependence is weakest in
the lower Péclet number regions. Table 2 supports this
statement. This table shows the numerically calculated
k., coefficients of [ 14] for a simple cubic packed bed of
uniform size spheres. The 5th column gives the ratio of
the k., for a bed with aL. = 9.9 to that for a deep bed (aL
= ). For a Péclet number of 9.6, this ratio is 1.29,
whereas the data collected in this work give a value for
this ratio of 2.8 when the aL ratio is 10:100.

The larger-than-anticipated length effect can be
explained by the presence of a non-uniform flow
distribution in the bed. The effect of channeling on
processes taking place in a bed has long been re-
cognized in the literature. The fluid may find pre-
ferential paths of least resistance through the bed.
These lower resistance paths may be near the wall
where the local porosity is higher than the bulk
average, but these paths are not necessarily confined to
the wall. Dullien [ 18] has pointed out thatin randomly
packed beds there is a finite probability for flow
connections of a larger than average size to form a
network transversing the entire length of the bed.

Schliinder [19] has discussed the effect of flow
maldistribution in an array of tubes. His array con-
sisted of one large diameter tube embedded in a matrix
of smaller sized tubes. Martin [20] has expanded upon
thisidea and applied it to a packed bed. In this work he
considered the bed to consist of two regions, an
annular outer region where the porosity is high and a
central core region with the bulk porosity. Both
workers have demonstrated that the overall mass
transfer coefficient one would calculate by appro-
priately summing the contributions of each flow seg-
ment is lower than that of a composite system where
the non-uniformities are neglected by an averaging
process. Both workers have used the inappropriate
limiting form of the mass transfer coefficient in their
segmented flow channels. Schliinder [19] recommen-
ded for each model tube, the combination of the
Graetz and Lévéque solution, which is much like the
combination suggested in equation (5). This com-
bination cannot reproduce the correct linear de-
pendence of &, upon the Péclet number in the low
Péclet number limit. Martin [20] has followed a
similar procedure by applying the Ranz equation in

each segment, which predicts that the Sherwood
number (defined on the particle diameter basis) re-
duces to 2 as the Péclet number approaches zero.

In the following analysis this idea of flow maldistri-
bution is expanded upon, and in the process the correct
limiting form for the Sherwood number is used.

The bed is now considered to be an array of two
different size radii straight tubes. In this manner, the
channeling flow is not conceptually limited to the
confining wall region. Each of these tubes has its
associated radius r, and r,, and its associated pore
space ¢, and ¢, such that the total bed porosity is e, +
&,. Two dimensionless geometry parameters are gene-
rated by this model, the ratio of tube radii r,/r; = &
and the porosity ratio ¢,/g,.

Since the pressure gradient is assumed to be identi-
cal in all tubes, the ratio of the flowrates can be
calculated by using the Hagen—Poiseuille solution

9:/9, = 8. (7

The lower case q; is used to designate the flowratein a
single tube of radius r;.. The upper case Q; will be used
to designate the flowrate in the entire collection of
tubes of radius r;.

The flowrate through the bed and the concentration
at the exit of the bed may be written as

0=0,+0, ®)
QcL = Qe + QL s 9)
Let y be the ratio of Q, to Q,; equation (9) becomes
G L oaa L (10)
cg 147 ¢ 1+ ¢

The overall Sherwood number for the bed is defined
as usual:

CL
_=e

Shy al
Xp [# —“L}. (11
Cp Pey ¢
Equation (10) can now be rearranged to calculate the
overall bed Sherwood number in terms of the Sher-
wood number in each individual tube matrix.

&K ¢ a,L Peg

£ i Y
= — — Pe.ln{—
a%, & aL Pe, ' aL ean{l+y+y+1

X €Xp gi& l_i%&&
¢ Pe, &, a,L Pe, Sh, '
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The Sherwood numbers Sk, have been defined as

k.
Sh, = “mi (13)
47y
and the Péclet numbers Pe; as
U,
Pe; = — 14
‘= 7 (14)

with v, being the superficial velocity in the bed of tube
size r; only. With p, so defined, the superficial velocity
for the entire bed follows as v, + v,.

Equation (12) can be placed into a more useful form
by eliminating the tube variables on the right side in

tormeo nftha manrasnanin naromatare far tha antivra had
terms of the macr USCOPIL paldinneivrs 101 Ui CHiic v,

It is straightforward to derive the following
relationships

Pe, = ;%EP% (15)

Pe, = ;:—:/Z% (16)

oL = Tz};} an

a,L = T‘f—:g/;;. (18)

These relationships can be used in equation (12) to
write

g 1 £,0%/e
Shy = Shy — — P 21
8 17 op Pesln {1 + 0% e 1+ £0%g,
aL Sh, Sh,
g exp[ . P_e.s(l 545;,1)]} 1
where h is defined as
(1+52/81)(1+8252f81)
h=h(5, &,/¢,) = 2
ho, &a/e1) (1+£2/6,0) (20)

By modeling the bed as an array of dual sized tubes,
equation (19) can be used to calculate the overall
conversion in the bed taking into account the flow
distribution and the availability of reactive surface area
in the network. The mass transfer coefficients for each
size tube matrix must be known in order to make use of
this result. Qur attention is now turned to this matter.

The experimental data indicate that there is no
significant length dependence for k,, in the higher
Péclet number region. This suggests that the Sherwood
numbers for each tube size matrix be empirically
combined from asymptotic values as

1 [ 1nl|n
sk~ US| TS S

These Sherwood numbers for the straight-tube model
are

1)

SHY = 1.20 Pe; (22)

94§

& L+g/ed)'? i3
[6(1—¢)]*"? 1+L‘j/e,} Pei”. (23)

There are now three parameters to fit to the data, 9,
&,/g, and n.

Figure 5is a plot of equation (19) compared with the
data. The parameter values were determined as before
in a least squares sense and were found to be 6 = 1.56,
&/e; = 0.0148 and n = 0.642. Figure 6 illustrates this
equation with the same fitted parameter set in com-
parison to the mass transfer data of other workers.

The channeling model fits the data collected in this
work for all Péclet numbers. The root mean square
deviation between the data and predicted Sherwood
numbers is 10.8%. It also gives an excellent fit to the
higher Péclet number data of the other workers. The
low Péclet number data fit is not as good but is
satisfactory.

The parameter set which fits the data collected in
this work should not be expected to be the best set for
other workers’ beds. It is representative of the range,
however, in which the values are expected to lie, and as
seen in Fig. 6 does give a satisfactory correlation.

Great care was taken in packing the bed used in this
study to generate a reproducible packing and to
minimize large voids. This is reflected in the porosity
value for the larger tube size. The larger void occupies
only 1.46% of the total void volume of the bed in this
study (g,/¢). A non-tamped, randomly dumped bed
would be expected to give a larger porosity value for
the bigger tubes. This would also be true for beds of
non-uniform size particles. Both of the above-
mentioned beds would exhibit larger channeling flows
and hence lower apparent mass transfer coefficients.
As a general rule, for a given Péclet number, the larger
the fraction of fluid which channels through the bed,
the smaller the apparent mass transfer coefficient.

In terms of the two-tube-size model, the effect of
channeling becomes insignificant at large Péclet num-
bers. Most of the reactant passes through the bed
unreacted in this situation, therefore the width of the
flow channel has very little effect. At low Péclet
numbers, however, the channeling effect will always be
apparent since the conversion at low Péclet numbersis
controlled dominantly by the larger channels. The
larger tubes are 56% larger in diameter than the
smaller tubes in this study and occupy only a small
percentage of the void volume; yet they are the
controlling resistance for conversion at the lower
Péclet numbers.

SH® = 0.896 {

SUMMARY

Equations (19) and (21) are the significant result of
this work. The parameter values ¢ = 04, n = 0.642, ¢,
= 0.00584, and 6 = 1.56 may be used in these
equations to correlate the transport-controlled mass
transfer coefficient in packed beds at low Reynolds
numbers (< 1).
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F1G. 6. Comparison of straight-tube channeling model with literature data.

The complexity of the periodically constricted tube
model was shown not to be required to model the mass
transfer characteristics of a packed bed. Rather, at low
Reynolds numbers a straight-tube model which in-
corporates a channeling flow effect was shown to
represent the data adequately.
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COEFFICIENTS DE TRANSFERT MASSIQUE DANS DES LITS FIXES A DES NOMBRES DE
REYNOLDS TRES PETITS

Reésumé—Des coefficients de transfert massique ont été mesurés avec précision dans des lits fixes par la
technique électrochimique aux faibles nombres de Reynolds {0,00271 < v/av < 0,198). Aux petits nombres
de Péclet, les mesures montrent une forte dépendance vis-a-vis de la longueur du lit, mais cette dépendance
diminue aux débits les plus élevés. Les résultats sont représentés par un modéle simple du volume des pores du

lit.

Le lit se comporte comme si 1,46%, du volume de pore était dans les pores dont le diamétre est 567 plus
grand que le diamétres des pores restant. Les plus grands pores causent une mauvaise distribution de
I'écoulement et ils réduisent nettement le transfert massique aux plus faibles nombres de Péclet.

STOFFTRANSPORTK OEFFIZIENTEN IN FESTBETTEN BEI SEHR KLEINEN REYNOLDS-

ZAHLEN

Zusammenfassung—Genaue, transportbestimmte Stoffiibergangskoeffizienten fiir Festbetten wurden mit
einem elektrochemischen Verfahren fiir kleine Reynolds-Zahlen gemessen (0,00271 < v/av < 0,198). Bei
kleinen Péclet-Zahlen zeigen die Werte einen starken EinfluB der Linge des Bettes, aber dieser Einflul
verringert sich bei héheren Durchsitzen. Die Ergebnisse wurden mit Hilfe eines geraden Zwei-GroBen-
Porenmodells fiir das Porenvolumen des Bettes korreliert. Das Bett verhielt sich so, als ob 1,46%, des
Porenvolumens aus Poren bestinde, deren Durchmesser 56% groer als der Durchmesser der verbleibenden
Poren war. Die gréfleren Poren haben eine Verschlechterung der Stromungsverteilung zur Folge und
verringern deutlich den Stoffiibergang bei kleinen Péclet-Zahlen.

KO3®PULHUEHTbBI MACCONMEPEHOCA B IIJIOTHBIX CJIOAAX MPH OYEHb HU3KHUX
3HAUEHUSX YHUCJIA PEHHOJIB/CA

ARHOTaUHMR — DIEKTPOXUMHHYECKUM METOAOM MOJIyYeHbl TOYHBIC 3HA4YEHHS KOIPPHUUHEHTOB Macco-
nepeHoca TUIOTHBIX CJI0EB MPK MaJIbiX 3HauYeHUsX 4ucia Pefinoabaca (0,00271 < v/av < 0,198). B ciyuae
ManblX 3HaueHuii umcia Ilekne HabaromaeTcs CHIIbHAs 3aBUCHMOCTb 3HaueHWH KOIPGHLUEHTOB OT
IUIMHBI CJI0f, OJIHAKO 3Ta 3aBMCHMOCTh YMEHBLIAETCA C YBEJIMEHHEM CKOPOCTH TeweHHA. Pe3ynbTaTel
IUTs MOPHCTOro obbeMa cyios 060611atoTCs ¢ MOMOLBIO IBYXMEPHOH MO/EH NPAMBIX MOP.
Crioii Beaet cebs, kak ecau 6b1 1,46 %, nopucroro o6xeMa HaxoAUNOCh B NIOpax, AMAMETP KOTOPbIX
Ha 569, mpesbillaeT AMaMeTp ocTaibHbIX nop. Mopel 60ablIEro pa3Mepa BhLI3BLIBAIOT HapYLIEHHA B
pacnpene/ieHHH HOTOKA M 3HAYNTE/ILHO CHIMKAIOT MEPEHOC MAcChl NPH 6oJiee MAsbix 3HAYEHUAX YHUCIA
[Texne.



