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Abstract-Accurate, transport-controlled, mass transfer coefficients for packed beds have been measured by 
an electrochemical technique at low Reynolds numbers (0.00271 < ujav < 0.198). At low Pblet numbers, the 
data show a strong dependence upon the bed length, but this dependence diminishes at the higher flow rates. 
The results are correlated by a dual-sized, straight-pore model for the bed’s pore volume. 

The bed behaves as though 1.46% of the pore volume were in pores whose diameter is 56% greater than the 
diameter of the remaining pores. The larger pores result in a flow maldistribution and significantly reduce 

mass transfer at the lower Pellet numbers. 

NOMENCLATURE 

dimensionless amplitude of sinusoidal, per- 
iodically constricted tube (PCT); 
specific interfacial area of tube size i matrix 
[cm-l]; 
= a, + u2, specific interfacial area of entire 
bed [cm-‘]; 
= (1 + J-/2; 
reactant feed concentration [mol/cm3] ; 
reactant concentration exiting from tube size 
i matrix [mol/cm3] ; 
reactant concentrating exiting from bed 
[mol/cm3] ; 
diameter of packing particle [cm] ; 
= Eak,E/v= ; 
free stream reactant diffusivity [cm’/s] ; 
dispersion coefficient [cm2/s] ; 
defined by equation (20); 
film mass transfer coefficient [cm/s] ; 
effective mass transfer coefficient for bed 

[cm/s] ; 
bed length [cm] ; 
empirical constant ; 
= vi/a@:,, Pellet number for tube size i 
matrix ; 
= v/a9,,, P&let number for bed; 
flowrate in tube size i [cm3/s] ; 
collective flowrate in tube size i matrix 

[cm3/sl ; 
radius of tube size i [cm]; 
dimensionless radius of PCT; 
= v/av, Reynolds number; 
= &,,,Ja@,,, Sherwood number for tube 
size i matrix; 
= FkJagn,, Sherwood number for bed; 
superficial velocity in tube size i matrix 

[cm/s] ; 

* Present address: Department of Chemical Engineering 
North Carolina State University, Raleigh, NC 27650, U.S.A. 

V, v1 + v2, superficial velocity in bed [cm/s] ; 
Z, streamwise coordinate [cm]. 

Greek symbols 

a, = ak,/v [cm- ‘I; 

Y* = QJQt ; 

&jr porosity of tube size i matrix; 

b”, 
= eI + e2, bed porosity; 

= r2/r1 ; 
V, kinematic viscosity [cm2/s] ; 
0, fitting coefficient in equation (6). 

INTRODUCTION 

MANY REFERENCES in the chemical engineering liter- 
ature report mass transfer coefficients in packed beds. 
Understandably, very few of these works have been 
directed at studying mass transfer rates at very low 
Reynolds numbers (cc 1). There is a need, however, to 
characterize the fluid-to-particle transport rate at very 
low Reynolds numbers, for example, the flowrate in 
flow-through porous electrodes must often be in a 
region of very low (CC 1) Reynolds number in order to 
minimize the detrimental ohmic potential drop [l]. 

This paper reports an experimental study of 
transport-controlled mass transfer coefficients at low 
Reynolds numbers (< 1) in a packed-bed reactor. The 
results are correlated by a model which incorporates a 
flow-maldistribution (channelling) effect. The work 
presented in this paper represents the final report in an 
effort to characterize on a more fundamental basis the 
mass transfer rate in packed-bed reactors [2-5). 

MASS TRANSFER COEFFICIENT 

There are two mass transfer coefficients that can be 
used to characterize the reaction rate in packed beds. 
The so-called film coefficient k, represents the pro- 
portionality constant between the local reaction rate 
and the local concentration driving force. The film 
coefficient appears on the right side of the conservation 
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equation for the reactive species as written in equation 
(1) for a mass transfer controlled reaction : 

The film mass transfer coefficient is a measure of the 
local reaction rate in the bed. It is a quantity that is not 
very convenient to measure. The concentration of the 
reactant far upstream and far downstream of a reactor 
is more readily accessible to experimental determi- 
nation. These measurements are correlated by the 
effective mass transfer coefficient k,. In the mass 
transfer controlled reactor under discussion, the de- 
finition of k, is 

k, = 2 In (cr/c,.). (2) 

These two mass transfer coefficients are related as has 
been pointed out by [l] ; 

l&L+; 

x In 
B+$(l -B)exp[-~~($+~~]/, (3) 

1 + D’JB2 

If so desired, the experimental k, measurements can be 
corrected by equation (3) to give k,. An expression for 
the dispersion coefficient is, however, required. The 
distinction between the two coefficients is unimportant 
at high Reynolds numbers. At low Reynolds numbers, 
the two coefficients show different dependencies on the 
flowrate, as has been discussed previously [3]. 

Shown in Fig. 1 are k, data (expressed as a 
Sherwood number) found in the literature as a func- 
tion of the P&let number. Each of these data points 
wascollectedin a mass transfer controlled bed with the 
Reynolds number (U/U) less than one. Both gas and 
liquid phase data are included. The Pellet number is 
the most appropriate grouping to characterize the 
mass transfer rates at low Reynolds numbers (creeping 
flow). 

Note that (l/a) has been chosen as the characteristic r 
length in lieu of the packing particle diameter. For a ’ 
bed of uniformly sized spheres, these two length scales 
are related by ad, = 6(1 - E). 

The lines sketched on this figure are drawn only to 
indicate the asymptotic trends of k, with the Pellet 
number (u/asO). Clearly, there are different trends. In 
the lower Pt?clet number range, k, becomes linearly 
proportional to the velocity u, whereas in the higher 
P&Jet number range k, becomes proportional to 3J~. 
This second line is a plot of Wilson and Geankoplis’ 
correlation [ 123 : 

km% 1.09 od, 1’3 . ..- 
c 1 8, & p‘o 

(4) 

Most of the data reported are taken in relatively 

shallow beds. The UL product ranges from 3 (one 
particle layer) to 29. 

There is considerable scatter in the data shown. The 
differences between different authors is certainly evi- 
dent, Also noteworthy is the large degree of scatter in 
the data confined to one author, particularly at the 
lower P&let numbers. 

Theoretical calculations [14] have predicted in 
creeping flow that the mass transfer coefficient should 
be dependent upon the length of the reactor. The 
validity of those calculations cannot be ascertained 
with the available data. 

MASS TRANSFER COEFFICIENT MEASUREMENTS 

The limiting-current procedure was used to measure 
the transport-limited mass transfer coefficients [6]. A 
schematic of the apparatus is shown in Fig. 2, and a 
summary of the procedure given below. The reader 
interested in more details should consult [15]. 

Summary of procedure 
A randomly packed bed of uniform-size, 3.175 mm 

(l/S” dia.), copper plated, stainless steel bearings was 
used as the cathode in a glass, thermostatted, elec- 
trochemical, flow-through reactor 76.2 mm in dia- 
meter. Copper was plated on the surface of these 
particles from an acidified (1 M H,SO,) copper sulfate 
solution. Copper deposition was chosen as the test 
reaction because atomic absorption could be used to 
measure accurately the ion concentration at the lower 
concentrations used (0.1 p.p.m.) with an uncertainty of 
k 1%. The evolution of 0, in a separate compartment 
was the anode reaction. Sufficient cathodic polari- 
zation was applied to the bed to ensure that the 
deposition reaction was controlled by the transport of 
the Cu’+ ions to the particle surface. This transport 
controlled reaction manifests itself as a limiting- 
current plateau on a plot of current vs applied 
potential. The overall reaction rate for the copper 
deposition can be measured by two independent 
techniques: (i) the inlet and outlet Cu’+ concentration 
is determined and (ii) the cell current is measured. The 
latter is, according to Faraday’s Law (assuming neglig- 
ible side reactions) proportional to the amount of 

&copper consumed. These two independent measure- 
ments permit a cross verification of the mass transfer 
coefficients calculated from the data. Only those data 
that gave muss transfer coejicients which deviate *5% 
from the average are reported. All other data were 
rejected. The experimental variables which were mani- 
pulated were the flowrate of the feed solution, the 
Schmidt number of the feed (by addition of glycerol), 
and the packing depth. The Reynolds number (v/av) 
varied from 0.198 to 0.00271; two values of Schmidt 
number were studied, 1900 and 8880, and the bed 
depth could be characterized by aL = 30 and 100. 

A total of 59 runs yielded k, data which meet the 
specification given above. The reduced data for these 
runs are presented in Table 1 and are compared with 
Appel and Newman’s data for a shorter bed on Fig. 3. 



Mass-transfer coefficients in packed beds at very low Reynolds numbers 937 

FIG. 1. Low Reynolds number mass transfer coefficients in packed beds. 

A clear dependency of Sh, on aL at the lower P&let 
numbers is seen, and this dependency diminishes as the 
P&let number increases. 

MASS TRANSFER COEFFICIENT CORRELATION 

In a series of earlier papers the authors have 
calculated predicted Sherwood numbers for a bed 
when the void space between the packing was en- 
visioned as a sinusoidal PCT. The following limiting 
Sherwood numbers were calculated : 

S/I’,‘) = low P&let number, deep bed asymptotic 
Sherwood number, 

Shg) = high P&let number, deep bed asymptotic 
Sherwood number, 

S/I?) = high P&let number, entrance region asymp- 
totic Sherwood number, 

Sh’,4’ = high P&let number, mixing region Sher- 
wood number. 

An attempt was made to combine these asymptotic 
Sherwood numbers smoothly in some manner to cover 
the non-asymptotic regions and compare the pre- 
dictions with the data in Fig. 3. Churchill and Usagi 
[16], expanding upon an idea suggested by Acrivos 
[17], have pointed out a manner to combine asymp- 
totic formulae. Their procedure will be utilized here. 
As a first attempt, the model for the bed as an array of 
PCT leads one to write 

This is not a unique representation, but it is the 
simplest. The exponent n must be determined by a 
data-fitting procedure. 

The usefulness of combining the asymptotic for- 
mulae as suggested in equation (5) can be found by 
testing it with wrensen and Stewart’s [14] calcu- 

r-If-7 
%, _& /_.jj 

Thermostoted 
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FIG 2. Schematic of packed bed electrode cell. 



Table 1. C’alculated results 
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207 2.18 

211 2.11 

46.5 1.34 

45.9 1.04 

65.” 1.48 

25.1 0.828 

23.2 0.471 

34.0 0.642 

22.8 “.YF! 

87.1 1.8” 

13.1 0.615 

5.2” 0.33” 

71.8 2.07 

li.? 0.45” 

27.2 0.683 

fs.2 1.5” 

36.8 1.08 

64.9 1.41 

26.5 0.897 

54.6 1.26 

97.1 1.78 

121 2.10 

179 2.55 

204 2.75 

249 2.86 

288 3.07 

343 3.22 

15” 1.99 

267 2.57 

218 2.41 

302 2.87 

182 3.33 

30.9 1.14 

8.63 0.523 
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189 2.88 
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322 3.57 

83 0.388 30.0 0.114 ll.0‘7‘ 88% 4 2 1 4.08 

lations. These authors have solved the convective 
diffusion equation in creeping flow for an array of 
uniformly sized, simple cubic packed spheres. They 
presented numerical calculations for k, as a function 
of bed depth and P&et number. They also presented 
formulae for the Sh$‘, i = 1,2,3. Figure 4 is a plot of the 

calculated k, compared with that given by com- 
bination of the asymptotes according to equation (5) 
with II = 1. Even in this worse case the deviation 
appears acceptable. 

The value of II to fit the experimental data was 
determined by fitting the 68 data points shown in Fig. 3 
to equation (5) by using a non-linear, least squares 
procedure. The value depended upon the tube para- 
meters used. Both a sinusoidal PCT model with rA = 
l/2, A/r, = l/3 and a straight tube model (Ah, = 0) 
were tested against the data. 

The data clearly indicate that in the lower P&let 
numbers ( < 10) the Sherwood number depends upon 
the packing depth. However, as the P&let number 
increases, this length dependence diminishes. For 
P&let numbers greater than 100, there is no significant 
distinction between the Sherwood number in a bed of 
aL = 10 vs aL = 100. At this P&let number, the 
Reynolds number was approx. 100/2000 = 0.05. 
Equation (5) could never reproduce this trend. It 
shows the strongest length dependence as the P&let 
number increases due to the Sh’,3’ which is the only 
length-dependent term in equation (5). 

In the high P&let number region, the model calcu- 
lations involved the assumption that the boundary 
layer formed along the particle surface retained its 
identity throughout the depth of the bed. It was 
anticipated that this would be true only in the creeping 
flow regime because any inertially caused mixing 
effects at higher Reynolds numbers would destroy the 
boundary layer. The higher P&let number data sug- 
gest that the boundary layers do lose their identity. 
One can speculate as to the cause of this phenomenon 
at such low Reynolds numbers. Perhaps the lateral 
mixing of streams due to the random placement of the 
particles (which is not taken into account in the model) 
contributes to the destruction of the boundary layers. 

No matter what the mixing mechanism, an empiri- 
cal Reynolds number dependence may be incorpo- 
rated into an analog of equation (5). In this manner, 
the asymptotic Sherwood numbers were combined as 

/ \n, I m 

fShk4’ ! 11 (6) 

The exponential term involving the Reynolds number 
will cause the contribution of the length-dependent 
term to become negligible compared to the length- 
independent term as the Reynolds number increases. 
There are now two parameters to fit to the data, n and 
CJ. The values of these parameters are again dependent 
upon the geometric parameters of the tube. 

The high P&let number data were fitted excellently 
by the straight-tube model but less well by the 
sinusoidal PCT. For all values of the P(;T geometrical 
parameters reported in the earlier publications, the 
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FIG. 3. Mass transfer limited Sherwood numbers for packed beds collected in this work. Appel’s [15] data 
are also included. 

PCT calculations consistently underestimate the mass 
transfer coefficient. The level of success obtained in 
fitting high Pellet number, mass transfer coefficients 
with the straight tube model was further emphasized 
when the data of other investigators were considered. 
However, neither model can satisfactorily fit the lower 
P&let number data. Both models overestimate the 
Sherwood number in this region and, as with equation 
(5) a length dependence is not predicted. These lower 
Pi&let number data point to a weakness in the model 
which will be discussed shortly. 

The straight-tube calculations fit the collected data 
at higher Pellet numbers much better than the PCI 
calculations. On this basis, one can conclude that the 
PCT model is not successful in fitting packed bed mass 
transfer data. The higher level of complexity required 

in calculating the PCT velocity profiles and asymptotic 
Sherwood numbers in a PCT geometry is not required. 
The PCI model was thought a priori to have been a 
better model for the bed because it would, in a sense, 
reproduce the constrictions and expansions that the 
actual fluid path must follow in a bed. This assumption 
has been proved wrong by this work. In the remainder 
of this work, the straight-tube model calculations are 
exploited. 

THE EFFECT OF FLOW MALDISTRIBUTION IN A PACKED 

BED ON THE MASS TRANSFER COEFFICIENT 

The low Peclet number, mass transfer coefficients 
obtained in this work show a stronger length de- 
pendence than is predicted by any model calculations. 

FIG. 4. 

IO I I , ,,,,,, I I , I,,\,, 1 I , 1,111, , , 11,111, / , , 1,111, , , , ,, 

COMBINATION OF LOW AND HIGH 

NUMERICALLY 
CALCULATED 

E=0476 

Comparison of S+ensen and Stewart’s [14] numerically calculated Sherwood numbers with 
given by combining the asymptotes according to equation (5) with n = 1. 

those 



Table 2. Calculated results of [ 141 for the mass transfer coefficient in a simplecubic packed bed ofuniformly 
sized spheres 

;. 
(1) (2) 

UL 49 9.9 
CIYo \ 
~_. ___Y_~ ._ .__~~~~_ _-. ~~~~~___ 

9.55 0.916 0.769 
31.8 1.37 1.09 
95.5 2.11 1.59 

318 3.1x 2.55 

The full solution to the convective-diffusion equation 
will give a length-dependent coefficient for all values of 
the Pellet number, but this dependence is weakest in 
the lower P&et number regions. Table 2 supports this 
statement. This table shows the numerically calculated 
k, coefficients of [14] for a simple cubic packed bed of 
uniform size spheres. The 5th column gives the ratio of 
the k, for a bed with aL = 9.9 to that for a deep bed (aL 
= -A). For a P&Aet number of 9.6, this ratio is 1.29, 
whereas the data collected in this work give a value for 
this ratio of 2.8 when the aL ratio is 10: 100. 

The larger-than-anticipated length effect can be 
explained by the presence of a non-uniform flow 
distribution in the bed. The effect of channeling on 
processes taking place in a bed has long been re- 
cognized in the literature. The fluid may find pre- 
ferential paths of least resistance through the bed. 
These lower resistance paths may be near the wall 
where the local porosity is higher than the bulk 
average, but these paths are not necessarily confined to 
the wall. Dullien [18] has pointed out that in randomly 
packed beds there is a finite probability for flow 
connections of a larger than average size to form a 
network transversing the entire length of the bed. 

Schltinder [19] has discussed the effect of flow 
maldistribution in an array of tubes. His array con- 
sisted of one large diameter tube embedded in a matrix 
of smaller sized tubes. Martin [20] has expanded upon 
this idea and applied it to a packed bed. In this work he 
considered the bed to consist of two regions, an 
annular outer region where the porosity is high and a 
central core region with the bulk porosity. Both 
workers have demonstrated that the overall mass 
transfer coefficient one would calculate by appro- 
priately summing the contributions of each flow seg- 

ment is lower than that of a composite system where 
the non-uniformities are neglected by an averaging 
process. Both workers have used the inappropriate 
limiting form of the mass transfer coefficient in their 
segmented flow channels. Schhinder [19] recommen- 
ded for each model tube, the combination of the 
Graetz and Leveque solution, which is much like the 
combination suggested in equation (5). This com- 
bination cannot reproduce the correct linear de- 
pendence of k, upon the P&let number in the low 
P&Aet number limit. Martin [20] has followed a 
similar procedure by applying the Ranz equation in 

(3) (4) 151 

15 / (2) (4) 

0.714 0.595 1.29 
0.954 0.598 1.82 
1.38 0.603 2.64 
2.18 0.614 4.15 

.~ 

each segment, which predicts that the Sherwood 
number (defined on the particle diameter basis) re- 
duces to 2 as the Pellet number approaches zero. 

In the following analysis this idea of flow maldistri- 
bution is expanded upon, and in the process the correct 
limiting form for the Sherwood number is used. 

The bed is now considered to be an array of two 
different size radii straight tubes. In this manner, the 
channeling flow is not conceptually limited to the 
confining wall region. Each of these tubes has its 
associated radius ri and rZ, and its associated pore 
space ci and Ed such that the total bed porosity is El + 

Q. Two dimensionless geometry parameters are gene- 
rated by this model, the ratio of tube radii rz/rl = 6 
and the porosity ratio EJF,. 

Since the pressure gradient is assumed to be identi- 
cal in all tubes, the ratio of the flowrates can be 
calculated by using the Hagen-Poiseuille solution 

4*/q, = d4. (7) 

The lower caSe qi is used to designate the flowrate in a 
single tube of radius rti The upper case Qi will be used 
to designate the flowrate in the entire collection of 
tubes of radius ri. 

The flowrate through the bed and the concentration 
at the exit of the bed may be written as 

Q=Ql+Qz (8) 

QCI_ = Q~CL.I + QA.~. (9) 

Let y be the ratio of Q2 to Q, ; equation (9) becomes 

CL _,+YcL.z, 1 CL1 
-= 

cF 1+y CF l+Y cF 
(10) 

The overall Sherwood number for the bed is defined 
as usual: 

:=exp[-$51 (11) 

Equation (10) can now be rearranged to calculate the 
overall bed Sherwood number in terms of the Sher- 
wood number in each individual tube matrix. 
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The Sherwood numbers Sh, have been defined as 

oh, _ Eikm.i 
ai9O 

(13) 

and the Pcclet numbers Pe, as 

pe, = ui 
%%3 

(14) 

with vi being the superficial velocity in the bed of tube 
size ri only. With ui so defined, the superficial velocity 
for the entire bed follows as ui i v2. 

Equation (12) can be placed into a more useful form 
by eliminating the tube variables on the right side in 
terms of the macroscopic parameters for the entire bed. 
It is straightforward to derive the following 
relationships 

(1.3 

(16) 

(17) 

(18) 

These relationships can be used in equation (12) to 
write 

where h is defined as 

h = h(6, EJE,) = 
(1 + &2/E* )(I + ~2~2/~1 1 . 

(1 + &2/c,6y 

(20) 

By modeling the bed as an array of dual sized tubes, 
equation (19) can be used to calculate the overall 
conversion in the bed taking into account the flow 
distribution and the availability of reactive surface area 
in the network. The mass transfer coefficients for each 
size tube matrix must be known in order to make use of 
this result. Our attention is now turned to this matter. 

The experimental data indicate that there is no 
significant length dependence for k, in the higher 
P&let number region. This suggests that the Sherwood 
numbers for each tube size matrix be empirically 
combined from asymptotic values as 

These Sherwood numbers for the straight-tube model 
are 

Sh!” = 1.20Bi f (22) 

There are now three parameters to fit to the data, 6, 
EJE~ and n. 

Figure 5 is a plot of equation (19) compared with the 
data The parameter values were determined as before 
in a least squares sense and were found to be 6 = 1.56, 
&J&i = 0.0148 and n = 0.642. Figure 6 illustrates this 
equation with the same fitted parameter set in com- 
parison to the mass transfer data of other workers. 

The channeling model fits the data collected in this 
work for all P&let numbers. The root mean square 
deviation between the data and predicted Sherwood 
numbers is 10.8%. It also gives an excellent fit to the 
higher Pellet number data of the other workers. The 
low P&let number data fit is not as good but is 
satisfactory. 

The parameter set which fits the data collected in 
this work should not be expected to be the best set for 
other workers’ beds, It is representative of the range, 
however, in which the values are expected to lie, and as 
seen in Fig. 6 does give a satisfactory correlation. 

Great care was taken in packing the bed used in this 
study to generate a reproducible packing and to 
minimize large voids. This is reflected in the porosity 
value for the larger tube size. The larger void occupies 
only 1.46% of the total void volume of the bed in this 
study (EJE). A non-tamped, randomly dumped bed 
would be expected to give a larger porosity value for 
the bigger tubes. This would also be true for beds of 
non-uniform size particles. Both of the above- 
mentioned beds would exhibit larger channeling flows 
and hence lower apparent mass transfer coefficients. 
As a general rule, for a given P&let number, the larger 
the fraction of fluid which channels through the bed, 
the smaller the apparent mass transfer coefficient. 

In terms of the two-tube-size model, the effect of 
channeling becomes insignificant at large P&let num- 
bers. Most of the reactant passes through the bed 
unreacted in this situation, therefore the width of the 
flow channel has very little effect. At low P&let 
numbers, however, the channeling effect will always be 
apparent since the conversion at low P&Jet numbers is 
controlled dominantly by the larger channels. The 
larger tubes are 56% larger in diameter than the 
smaller tubes in this study and occupy only a small 
percentage of the void volume ; yet they are the 
controlling resistance for conversion at the lower 
P&et numbers. 

SUMMARY 

Equations (19) and (21) are the si~i~cant result of 
this work. The parameter values E = 0.4, H = 0.642, e2 
= 0.00584, and ~5 = 1.56 may be used in these 
equations to correlate the transportcontrolled mass 
transfer coefficient in packed beds at low Reynolds 
numbers (< 1). 
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FE. 5. Combination of straight-tube asymptotic Sherwood numbers incorporating a channeling effect 
according to equation (19) with I: = 0.4, n = 0.642, cz = 0.00584 and 6 = 1.56. 

FIG. 6. Comparison of straight-tube channeling model with literature data. 

The complexity of the periodically constricted tube 

model was shown not to be required to model the mass 
transfer characteristics of a packed bed. Rather, at low 
Reynolds numbers a straight-tube model which in- 
corporates a channeling flow effect was shown to 

represent the data adequately. 
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COEFFICIENTS DE TRANSFERT MASSIQUE DANS DES LITS FIXES A DES NOMBRES DE 
REYNOLDS TRES PETITS 

R&rune-Des coefficients de transfert massique ont ete mesures avec precision dans des lits fixes par la 
technique electrochimique aux faibles nombres de Reynolds (0,00271 < u/av < 0,198). Aux petits nombres 
de Pellet, les mesures montrent une forte dependance vis-r&is de la longueur du lit, mais cette dipendance 
diminue aux debits les plus eleves. Les resultats sont representts par un modele simple du volume des pores du 
lit. 

Le lit se comporte comme si 1,46x du volume de pore etait dans les pores dont le diametre est 56% plus 
grand que le diametres des pores restant. Les plus grands pores causent une mauvaise distribution de 

l’tcoulement et ils reduisent nettement le transfert massique aux plus faibles nombres de Peclet. 

STOFFTRANSPORTKOEFFIZIENTEN IN FESTBETTEN BE1 SEHR KLEINEN REYNOLDS- 
ZAHLEN 

Zusammenfassung-Genaue, transportbestimmte Stoffttbergangskoefienten fur Festbetten wurden mit 
einem elektrochemischen Verfahren fur kleine Revnolds-Zahlen gemessen (0.00271 < u/av < 0,198). Bei 
kleinen P&let-Zahlen zeigen die Werte einen s&ken EinfluB dir Lange des Bettes, aber dieser Einflul3 
verringert sich bei hoheren Durchsiitzen. Die Ergebnisse wurden mit Hilfe eines geraden Zwei-Groben- 
Porenmodells fur das Porenvolumen des Bettes korreliert. Das Bett verhielt sich so, als ob 1,46x des 
Porenvolumens aus Poren bestande, deren Durchmesser 56% grinder als der Durchmesser der verbleibenden 
Poren war. Die grol3eren Poren haben eine Verschlechterung der Stromungsverteilung zur Folge und 

verringern deutlich den Stoffiibergang bei kleinen P&let-Zahlen. 

K03@@MLIMEHTbI MACCOIIEPEHOCA B IUIOTHbIX CJIOIIX HPM OqEHb HM3KMX 
3HAYEHMRX ‘IMCJIA PEHHOJIbACA 

Amorama - %eKTpOXl,MWeCKHM MeTOLLOM UOny’teHb, TOqHblC 3HaWH1(11 KO3~~)HL,HCHTOB MBCCO- 

nepeHoca nnornatx cnoea npu Mant.tx aua~eunax ‘Iucna Pefiuonbnca (0,00271 < o/av i 0,198). B cnyqae 
Ma.“blX 3Ha’feHHii ‘tNCna DeKne na6nronaeTca CHJ,bHaR 3aBHCHMOCTb 3HaHeHHii K03+$HuHeHTOB OT 
mHHbl CBOB, OflHaKO 3Ta 3aBHCNMOCTb YMeHbWaeTCR C YBenIWeHMeM CKOPOCTH TeYeHWII. Pe3yJibTaTbl 
~JUI nopHcToro o6aeMa cnoB o606marorcB C noMombIo nByxMepHoti MoaeJIH npnMblx nop. 

Cnofi BeneT ce6n, KaX ecnH 6bi 1,46:/L nopscroro o6aeMa HaxonHnOCb B nopax, nHaMeTp Koropblx 
Ha 56% npeBb,LLIaeT .miaMerp OCTa,ibHblX nOp. DOpbI 6onbmero pa3Mepa Bbl’JblBamT HapyUleHWl B 

pacnpeneneHHH noroxa A 3HawrenbHo cHH~aio-r nepeHoc Maccbi npe 6onee h4anblx 3HaqeHmx qncna 
Herne. 


